Dynamic Field Mapping and Motion Correction Using Interleaved Double Spin-Echo Diffusion MRI
نویسندگان
چکیده
Di↵usion MRI (dMRI) analysis requires combining data from many images and this generally requires corrections for image distortion and for subject motion during what may be a prolonged acquisition. Particularly in non-brain applications, changes in pose such as respiration can cause image distortion to be time varying, impeding static field map-based correction. In addition, motion and distortion correction is challenging at high b-values due to the low signal-to-noise ratio (SNR). In this work we develop a new approach that breaks the traditional “one-volume, one-weighting” paradigm by interleaving low-b and high-b slices, and combine this with a reverse phase-encoded double-spin echo sequence. Interspersing low and high b-value slices ensures that the lowb, high-SNR data is in close spatial and temporal proximity to support dynamic field map estimation from the double spin-echo acquisition and image-based motion correction. This information is propagated to high-b slices with interpolation across space and time. The method is tested in the challenging environment of fetal dMRI and it is demonstrated using data from 8 pregnant volunteers that combining dynamic distortion correction with slice-by-slice motion correction increases data consistency to facilitate advanced analyses where conventional methods fail.
منابع مشابه
Dynamic and inherent B0 correction for DTI using stimulated echo spiral imaging.
PURPOSE To present a novel technique for high-resolution stimulated echo diffusion tensor imaging with self-navigated interleaved spirals readout trajectories that can inherently and dynamically correct for image artifacts due to spatial and temporal variations in the static magnetic field (B0) resulting from eddy currents, tissue susceptibilities, subject/physiological motion, and hardware ins...
متن کاملاندازه گیری غیریکنواختی امواج رادیوئی در ام آر آی
Introduction: Non-uniformity is one of the most important parameters affecting MRI images which can lead to harmful effects in the diagnosis and analysis of qualitative and quantitative methods. The present study introduced a method for measuring RF non-homogeneity in MRI systems. Methods and Materials: To verify the uniformity of B0 and B1 fields, a cylindrical phantom with a diameter of 24 c...
متن کاملAssessment of the Characteristics of MRI Coils in Terms of RF Non-Homogeneity Using Routine Spin Echo Sequences
Introduction: One of the major causes of image non-uniformity in MRI is due to the existence of non-homogeneity in RF receive and transmit. This can be the most effective source of error in quantitative studies in MRI imaging. Part of this non-homogeneity demonstrates the characteristics of RF coil and part of it is due to the interaction of RF field with the material being imaged...
متن کاملA spin echo sequence with a single-sided bipolar diffusion gradient pulse to obtain snapshot diffusion weighted images in moving media.
In vivo MRI data can be corrupted by motion. Motion artifacts are particularly troublesome in Diffusion Weighted MRI (DWI), since the MR signal attenuation due to Brownian motion can be much less than the signal loss due to dephasing from other types of complex tissue motion, which can significantly degrade the estimation of self-diffusion coefficients, diffusion tensors, etc. This paper descri...
متن کاملSelf-navigated interleaved spiral (SNAILS): application to high-resolution diffusion tensor imaging.
A fat-saturated twice-refocused spin echo sequence was implemented on a GE Signa 1.5-T whole-body system for diffusion-weighted imaging. Data were acquired using an analytically designed interleaved variable-density (VD) spiral readout trajectory. This flexible design algorithm allowed real-time prescription on the scanner. Each interleaf of the VD spiral oversampled the center of k-space. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017